

FINAL PRESENTATION Iowa State University 04/7/2025

Team Introductions

Stuart Satterwhite

Jack Smith

Ashley Althaus

Austin Nolley

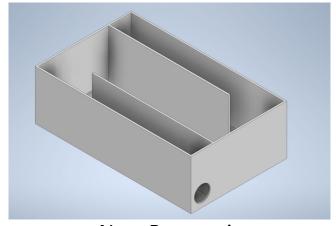
Dr. Brian Steward

Dr. Saxon Ryan

Overview

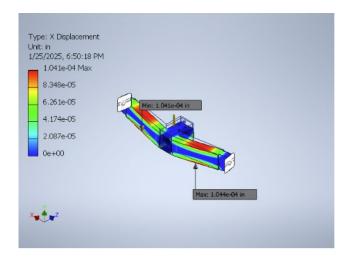
- Failures and Improvements
- Goals and Design Choices
- Vehicle Construction
 - Component Design
 - Component Installment
- Hydraulic & Pneumatic Circuits
- Bike Changes & Improvements
- Electronic Controls & Instrumentation
- Lessons Learned

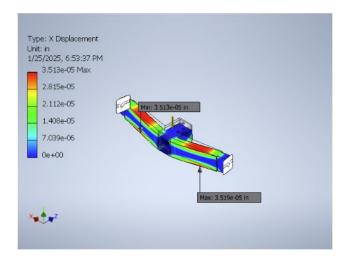
Failure Investigation



- During last years competition we discovered some design flaws
- Introduction of new frame, bad reservoir
- Also had a lot of lessons that we learned about timeframes and collaboration that we hope do improve on

What we did to Improve


- Redesigned our reservoir to have internal baffles between the entrance and exit orifices
- Designed the front of the bike with a focus on strength to withstand bending


New Reservoir

What we did to Improve

Solid Metal Support

Bolted Multi Part Metal Support

Final Construction

Goals

- Reduce Weight by removing Bent Axis Motor
 - Change circuit to incorporate the use of just one motor
- Reduce flexure of frame and chain popping during the competition
 - Switch from bike chains for direct drive to poly chains
 - Strengthen the frame connections with gusset plates and bolts
- Improve the Safety and Appearance of Bike
 - Installed safety guards and new spots
 - Finished the bike with clean bend metal lines

Design Choices

Design of Front Axle Support

- 2" x 2" square tube with a wall width of .25"
- Enhanced rigidity where it was needed to maintain wheel alignment
- 2" x 1" solid aluminum bolted to 2" x 2" tube with gusset plate
- Reuse of axel connections from previous bike

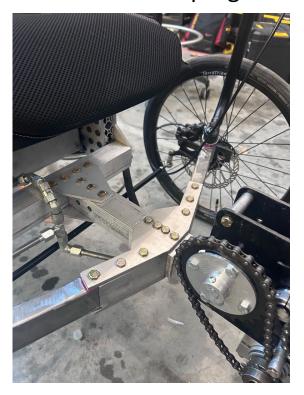
Design of New Circuit

- Use of 2 2/2 normally closed DCV's (4 used last year)
- Use of 1 2/2 normally open DCV's
- Allows for the use of one motor/pump for all operations

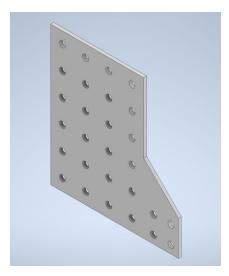
Use of Poly Chains

Requested several pulley and belt sizes from I-Motion

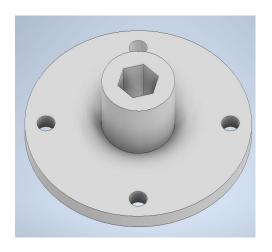
Vehicle Construction



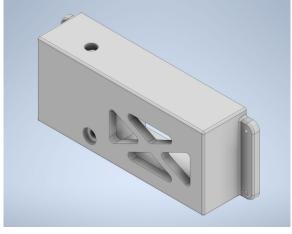
New Front Support Design


Members as outlined in the last slide

Construction in progress



Designed Components



80-20 Bracket

Bike Sprocket Adapter

Battery Box

Designed Components Installed

Battery Box

Pulleys and Polychain

Improvements on Safety

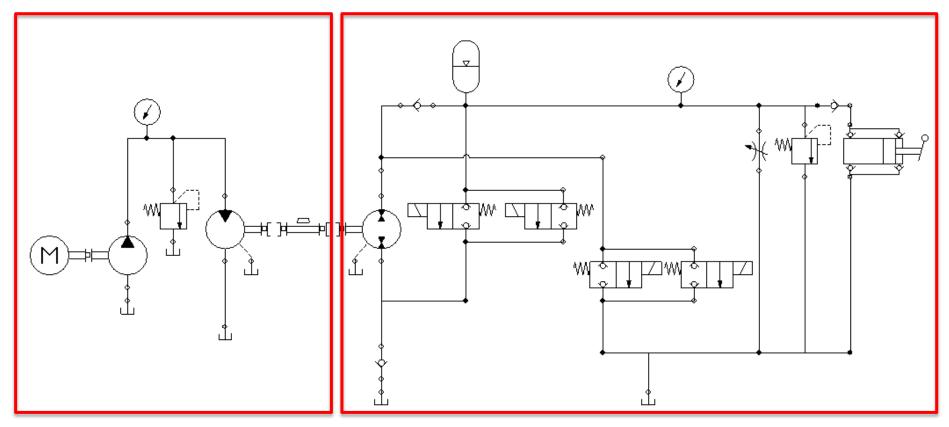
Guard Installed on Gearbox

Guard Over Front Chains

Component Selection

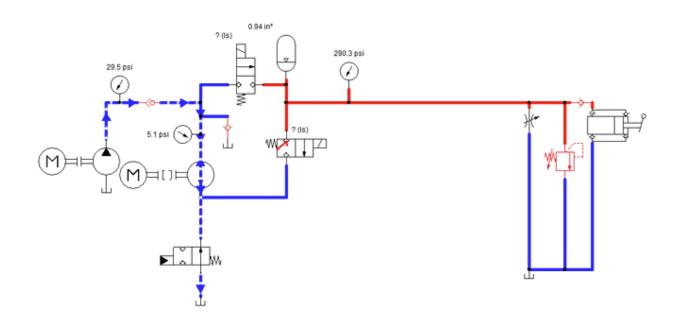
Resistence		Force (lbf)	Caculation						
Grade Resistence		28	Weight * sin(% grade)						
Rolling Resistence		2	Weight * rolling resistence * cos(% grade)						
Wind Resistence		1.1	Drag Coefficent * Density of Air * Cross sec Area * Velocity Square						@ 6 mph
		13							@20 mph
Acceleration		13	@1 ft/s^2						
		26	@2 ft/s^2						
	Total	69							

Torque (wheel) l	bf*ft						
Force (lbf)	69						
Radius (wheel)	0.75						
Torque (wheel)	51.75						
Torque (motor)							
Gear Ratio	2						
Torque (wheel)	51.75						
Torque (motor)	25.875						
Motor Displacment							
Torque (motor)	310.5						
PSI	2250						
Mech. Eff.	0.9						
Motor Displacm	1.0						


These calculations lead to our decision to select the 1.21cc Danfoss Type J motor

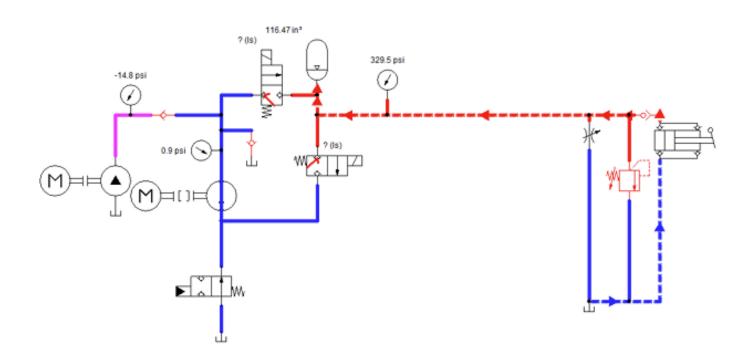
Previous Hydraulic Circuit

Pedal Circuit

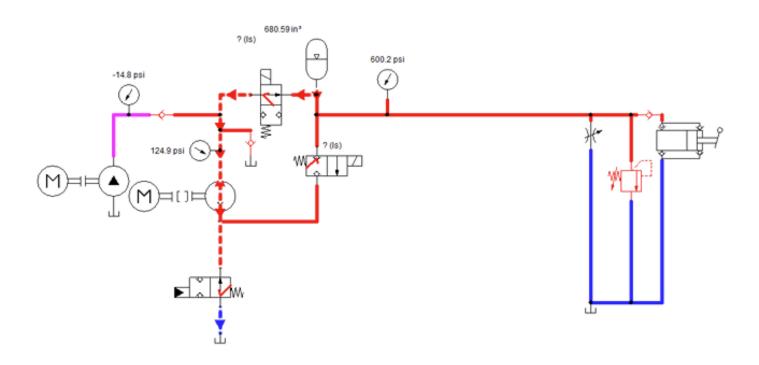

Accumulator and Regen Circuit

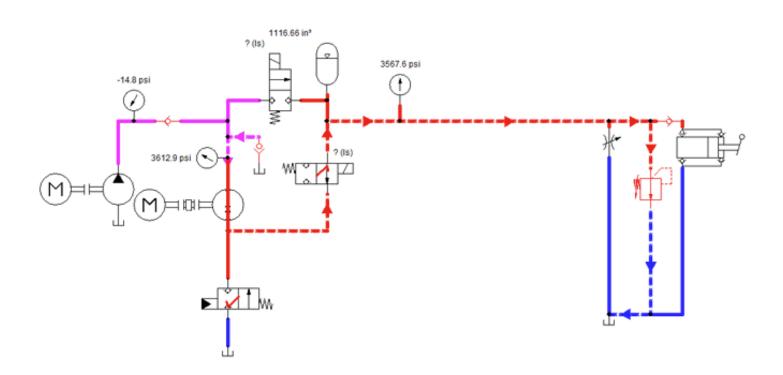
- 4 2/2 DCV in parallel
- Manual hand pump
- Micro pump, 2.8cc Gear Motor, 5.1cc Bent Axis Pump Motor

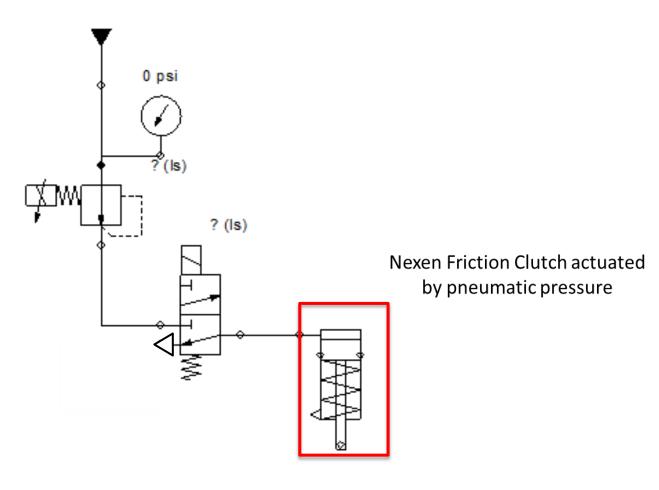
Current Hydraulic Circuit (Direct Drive)



- 2 2/2 DCV normally closed, 1 2/2 DCV normally opened
- Manual hand pump
- Replaced 2.8cc motor and 5.3cc bent axis pump motor with 1.21cc motor


Accumulator Pressurization


Accumulator Power


Regen Power

Pneumatic Circuit revised?

Electronics

Fluid Power VEHICLE

- 2 12-volt interstate batteries (total 24 volt) powering three solenoids on the manifold connected by switches on the handle of the bike.
- Our original plan was to utilize the controller from previous team designs but have faced issues with software and time constraints. The use of the switches achieved the same goal with a simpler approach.

Misc Component Selection

Lessons Learned

- Long lead times for components
- Collaboration is important for team success
- Utilize knowledge of industry professionals
 - Establishing mentors
 - Fostering relationships
- Setting deadlines is essential
 - Planned worktimes and meetings
- Analysis before design in one of the most important steps of the design process

Special Thanks You's!!

- Our mentor Tony Hennum
- Safety coordinator Hoa Chi
- Professor John Sheriff
- Fabricators at Sargent Metal Fab

Thank you!

