Fluid Power

FINAL PRESENTATION &
DESIGN REVIEW
Cal Poly San Luis Obispo
Jim Widmann
May 1st

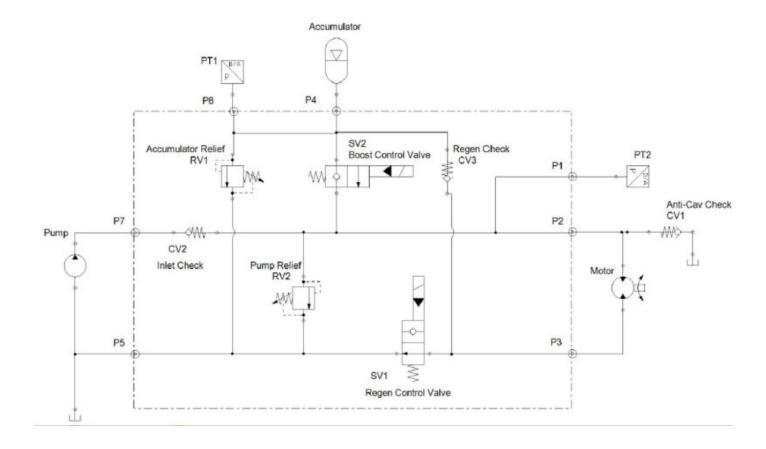
Team Introductions

Tristan Crawford

Karan Hothi

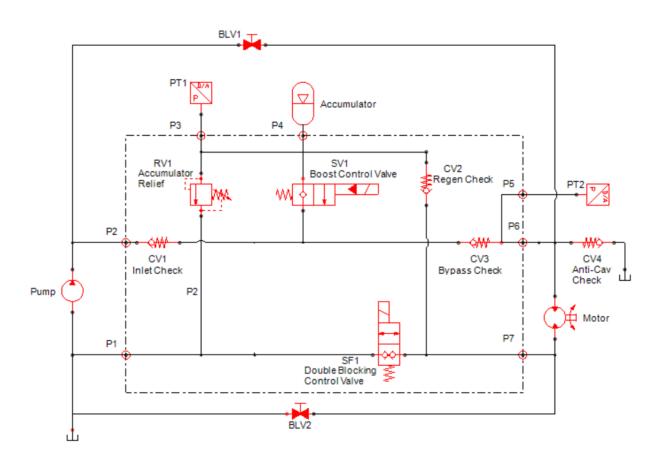
Justin Lesko

Diego Velazquez



Lucas Erickson

Hydraulic System-Circuit

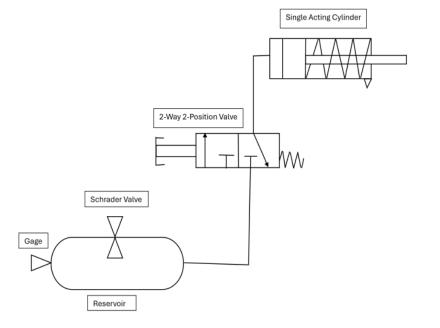


2024 Cal Poly FPVC Team Hydraulic Circuit Schematic

Hydraulic System-Circuit

System changes:

- Parker F11-5cc motor/pump
- Bypass line with rigid lines
- Bypass check valve
- Replaced SV1 with SF1 (double blocking valve)


Hydraulic Construction

- Routed hydraulic lines 3 different times to avoid putting stress on the mounts(caused a leak with the old motors)
- Motor was switched due to a leak, which necessitated fabrication of sprockets to fit the new spline shaft
- Used hydraulic hoses instead of solid lines to facilitate installation with newer motors
- Removed dials and gauges used for calibrating sensors

Pneumatic Circuit

- Switched to meter out flow control valves moved to exit of solenoid valve
- Added manual valve before muffler as extra mechanical failsafe

Double Acting Cylinder

5/3 Solenoid Valve

Speed

control valves

vaiv

Reservoir Pressure Regulator

Filter

Manual Exhaust Valve

Muffler

FPVC 2025 Schematic (Note – manual valve should not have spring).

FPVC 2024 Pneumatic Schematic

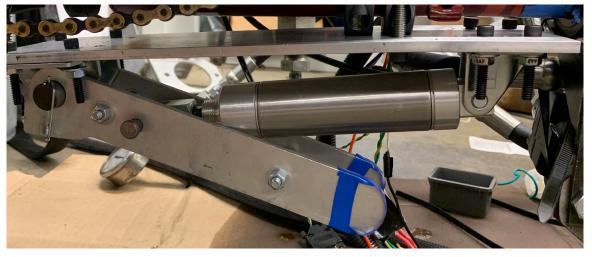
Construction: Manufacturing Processes

- Waterjet
 - Jack stand, hydraulic mounts, sprockets
- Drilling and sanding
 - All metal mounts
- 3D printing
 - Screen mount, chainguard, analog controls mount
- Soldering
 - Mechatronics PCB

Construction: Assembly



- Manifold, motors, and jack stand mounted to central frame
- Custom sprockets attached to splined motor shafts and secured with spacers
- New chains and tensioners aligned with front and rear drivetrains
- Mechatronics screen mounted in front of seat. Battery and additional circuitry attached to reservoir mount
- Chainguard attached to front drivetrain
- Hoses and wires routed around the bike


- Hydraulics
 - Averaged direct drive pressure to find optimal pre-charge pressure
 - Tested optimal fluid capacity
 - Stand can only lift bike 4 times, not 7 times as calculated

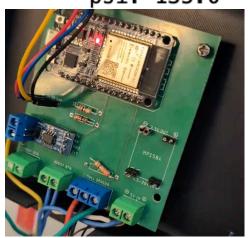
Fluid Power VEHICLE Challenge

- Pneumatics
 - Initial testing performed off of bike to confirm range of motion
 - Intermediate testing performed with manual valve before mechatronics added
 - Stand can only lift bike 4 times, not 7 times as calculated

- Drivetrain
 - Rear tensioner mounted underneath frame due to high force on chain and chain alignment

 Due to reliability issues during testing, variable gearing system was removed

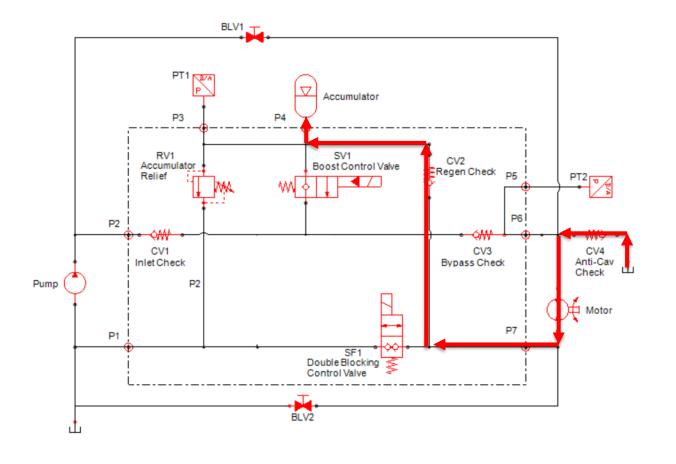
- Mounting:
 - Due to manufacturing delays, new motor mounts were scrapped in favor of repurposing old mounts
 - Adjusted to align with drivetrain and manifold positioning
 - 3D printed mounts were strength tested, revealed failure points
 - New mounts include higher density and fillets



Mechatronics

- Tested mechatronics to ensure reliable message exchange between microcontroller and valve driver, preventing the bike from getting stuck in boost mode.
- Calibrated hall effect sensor and pressure transducer for accurate speed and pressure readings

signal: 621
psi: 108.75
signal: 624
psi: 112.5
signal: 629
psi: 118.75
signal: 633
psi: 123.75
signal: 637
psi: 128.75
signal: 642
psi: 135.0



CAN Bus Initialized Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00 Button Pressed → acc_dump Executed Command: acc_dump Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00 ----acknowledged on 0x184----Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00 Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00 Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00 Button Released → direct Executed Command: direct Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00 ----acknowledged on 0x184----Wheel Speed (RPM): 0.00 Wheel Speed (mph): 0.00

Regenerative Braking

- Circuit was developed for regenerative braking
- However tire has a ratcheting mechanism that does not allow for proper regenerative braking

Lessons Learned

- Nothing works the first time (or second)
- Start manufacturing early, anticipate delays
- Design for manufacturing splined shaft

