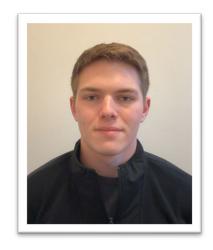


FINAL PRESENTATION
NORTHERN ILLINOIS UNIVERSITY
TEAM ADVISOR: GHAZI MALKAWI



Team Introductions

Frame and Mechanical

Max Kahler

Rakan Abu Al Rub

Cin Suum

Team Introductions

Hydraulics and Controls

Arthur Kozlowski

James Simmons

Forrest Arroy

Jaron Benson

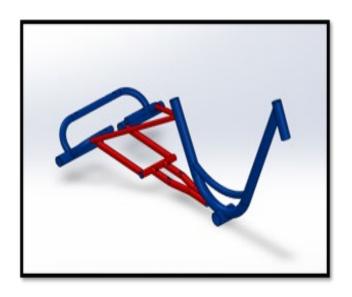
Jacob Connors

Old vs New Vehicle Design

2025

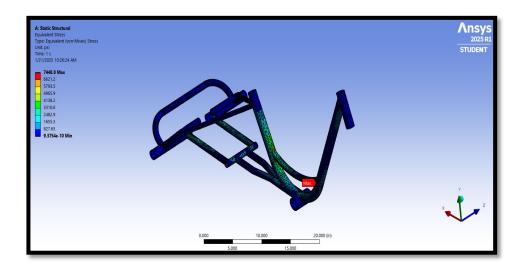
Weak Points

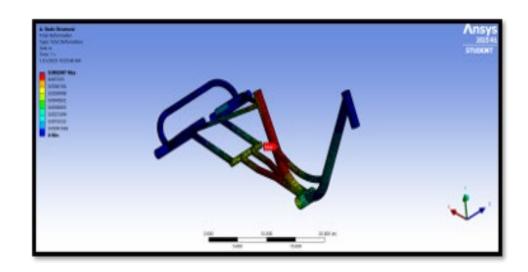
erference: Chain contacted the frame, causing friction and


id Power

- Chain Interference: Chain contacted the frame, causing friction and wear.
- Accumulator Pre-Charge: Time-consuming and difficult.
- Poor Layout: Inefficient component placement made maintenance harder and increased weight.
- Bulky Brackets: Oversized and heavy, taking up excess space.
- Weight: 2024 vehicle weighed 190lbs

Improvements


- Redesigned Rear Frame: Removed chain interference and improved component layout.
- Better Chain Clearance: Fixed friction with improved alignment.
- **Refined Brackets:** Lighter, compact, and easier to remove.
- Easier Pre-Charge: New gear ratio adds torque for faster charging.
- Less Weight: 2025 vehicle weighs 162lbs


Frame Modifications & FEA Analysis

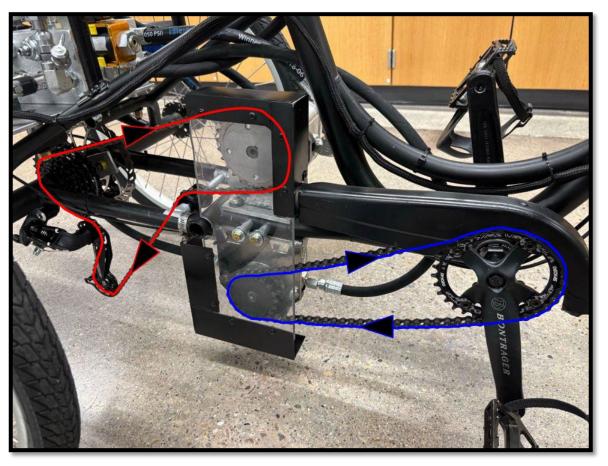
Modified frame sections are shown in RED

The analysis was conducted using ANSYS Workbench 2025, with a 200lbf load applied to the seat post to simulate the weight of a 200lb rider under flat, level ground conditions with a constant force.

Results:

- Maximum deformation: 0.0082"
- Maximum equivalent stress: 7,448 psi
- Safety Rating: 4.43

Improved Gear Ratios

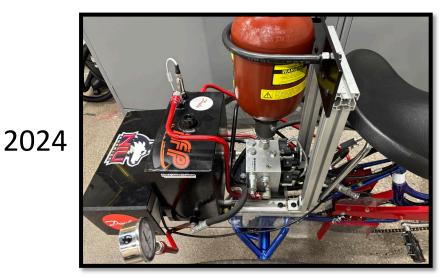

Pedal to Pump

Last Year					
Pedal Sprocket	Pedal Sprocket Pump Sprocket				
36	36	1			

This Year					
Pedal Sprocket	Pump Sprocket	Ratio			
32	18	1.78			

Motor to Axle

Gear Selection	Motor Sprocket	Rear Sprocket	Ratio	
1	28	34	0.82	
2	28	28	1.00	
3	28	24	1.17	
4	28	21	1.33	
5	28	18	1.56	
6	28	15	1.87	
7	28	13	2.15	


The revised pedal-to-pump gear ratio makes accumulator pre-charging easier and enables full use of the motor-to-axle gear range, resulting in a more efficient and improved riding experience

Custom Hydraulic Mounting Brackets

Pump & Motor Brackets

Pump & Motor Brackets:

The new pump & motor mounts are more compact, lighter, and easier to remove, allowing for better maintenance and assembly.

2025

Component Mounting:

The new design is lighter, more compact, and provides secure mounting for key components while allowing easier access for maintenance and adjustments.

Chain Clearance & Safety

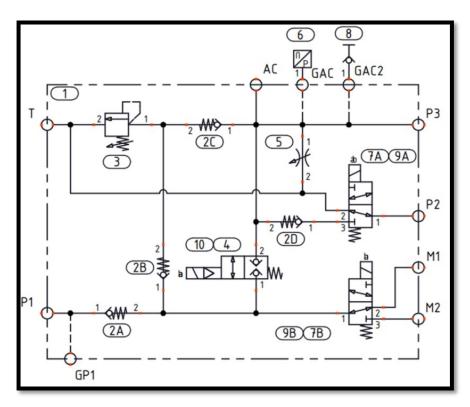
Chain Interference

2024

Chain Interference:

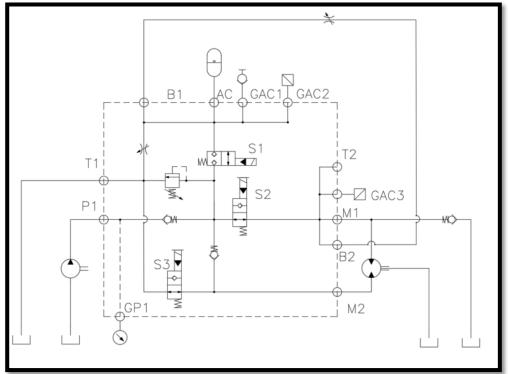
The chain interference was eliminated by the frame redesign, eliminating unwanted friction and chain derailment.

2025



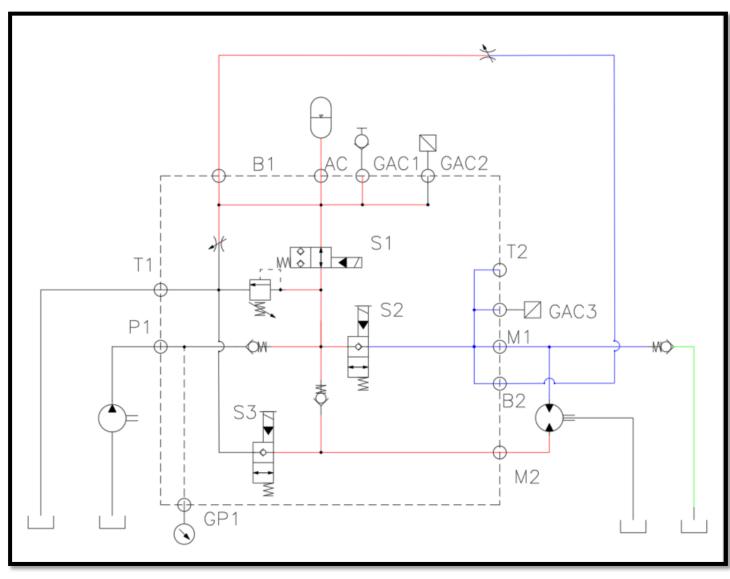
Safety Guarding:

The chain guard allows quick removal for easy access to the pump and motor during gear changes or maintenance.


Old vs New Hydraulic Schematic

Old Schematic Weak Points

- Higher pressure loss from 3-way 2positions solenoids
- Spool type solenoids to hold pressure
- Can't tell the pressure at the motor

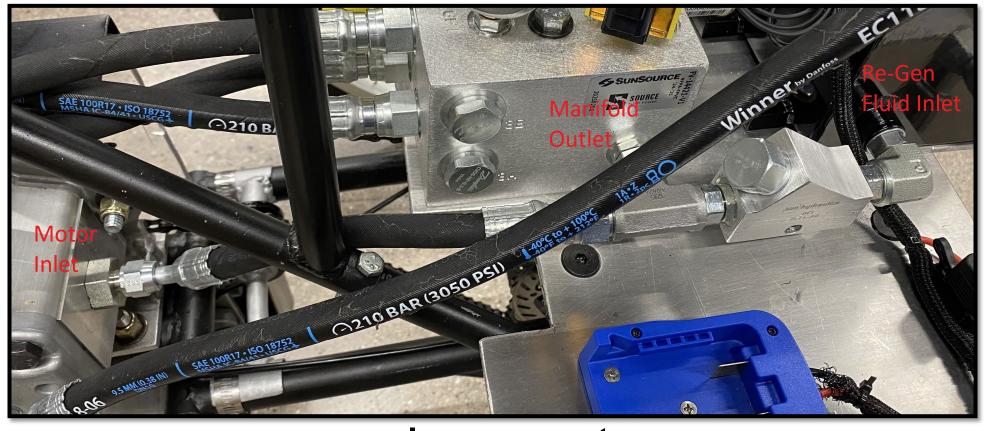


New Schematic Improvements

- Three 2-way 2-positions solenoid design
- Poppet style solenoids to reduce pressure losses
- Additional pressure transducers at motor inlet
- External needle valve for discharging

New Hydraulic System Regenerative Braking

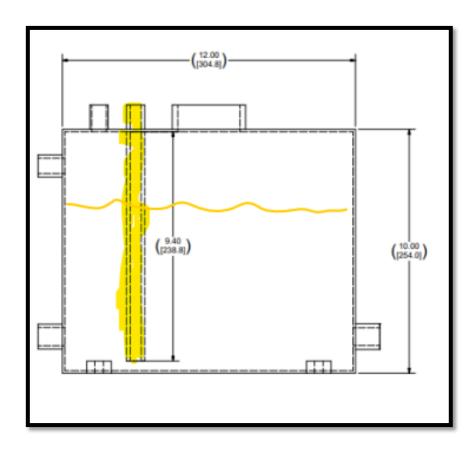
Old Hydraulic System



Weak Points

- Motor cavitation
- Many fittings at inlet of motor causing restriction
- 90-degree elbow into motor
- Upside down motor

New Hydraulic System



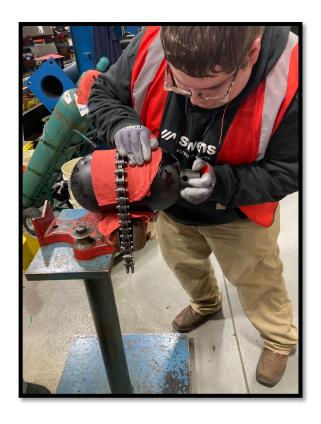
Improvements

- Horizontal motor
- Reduced fittings and 90 elbow at inlet

Old Vs. New Tank

Old Tank Weak Points

- Oversized
- Shared connection for return line and regenerative braking inlet



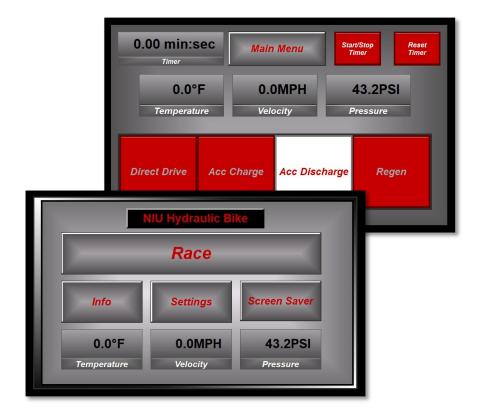
New Tank Improvements

- Taller design for increased static pressure
- Smaller volume for weight reduction
- Additional connection for regenerative braking inlet
- Breather cap

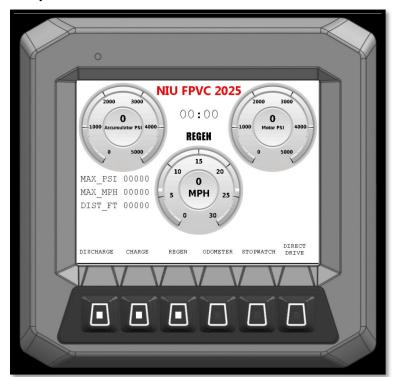
Hydraulic Components

Parker BA01B3T01P2 SAE Bladder Accumulator 1 Gallon

Danfoss 111.20.243.00 Gear Pump 0.659 CIR


Danfoss 121.20.045.00 Gear motor 1.025 CIR

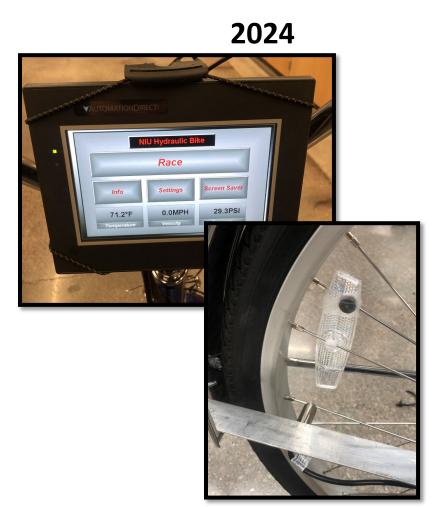
Old vs New Controls System

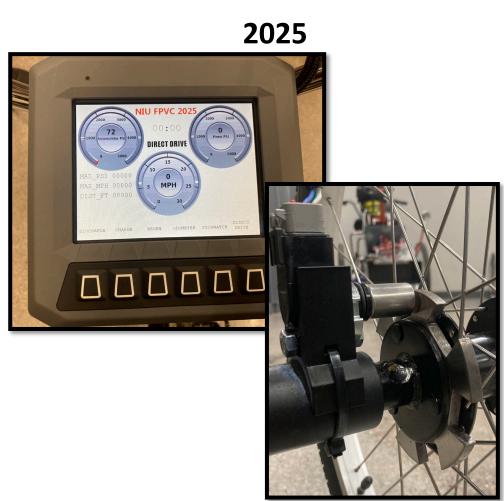

Standard Features

- Displays PSI and MPH
- Can store max velocity, pressure and distance values
- Only requires one input to control drive modes

2025 Improvements

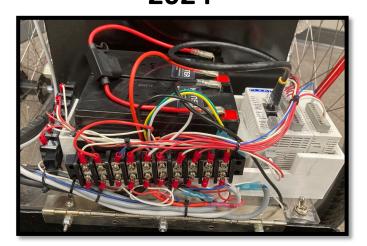
- More responsive buttons
- Additional pressure sensor for system PSI
- Dial gauges for reading velocity and pressure
- No switching between screens
- Components secured to bike

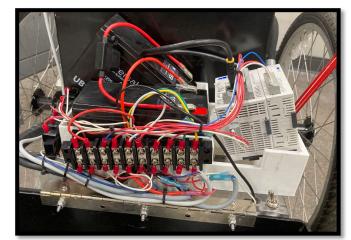



Display and Speed Sensor

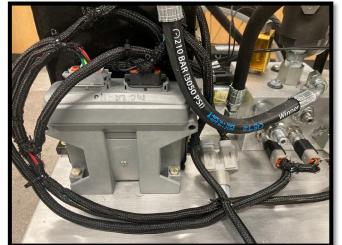
2025 Improvements

- Physical buttons on display panel for controlling modes
- Speed sensor with custom 6 tooth speed ring for more responsive readings



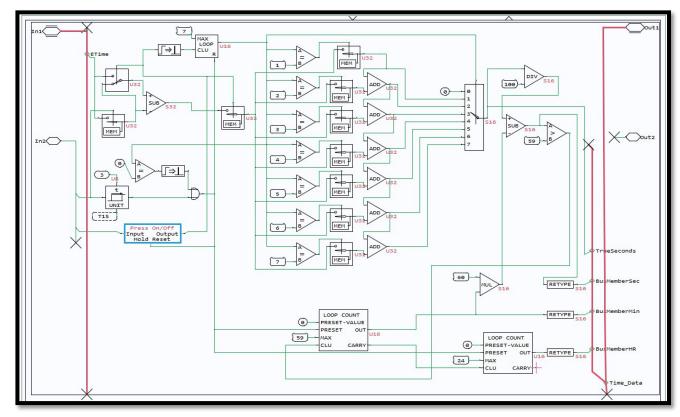

Controls & Battery

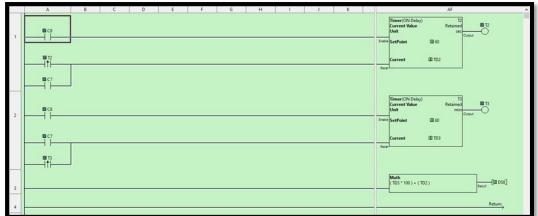

2025 Improvements


- Lighter Battery
- Battery and Controller Secured to mounting plate

2024 2025

Controls Programing For Sensors


2025
Graphical Drag
and Drop


2024 Ladder Logic

Controls Programing for Stopwatch

2025
Graphical Drag
and Drop

2024 Ladder Logic

Calculations

Motor CIR	Pedal RPM	N Pre Charge	Max Charge				
1.025	60	1200	3000				
Gear Selection	Speed Ration	Calculated Pull	Max Lbs Pull	Avg Lbs Pull	Distance Traveled	MPH_1	MPH_2
1	1.21	16	51	29	655	4.0	2.2
2	1.00	20	42	24	796	4.8	2.7
3	0.86	23	36	21	928	5.6	3.1
4	0.75	27	31	18	1061	6.4	3.6
5	0.64	31	27	15	1238	7.5	4.2
6	0.54	37	22	13	1485	9.0	5.0
7	0.46	43	19	11	1714	10.3	5.8
Pump CIR	Pedal RPM						
0.659	60					_	
Gear Selection	Gear Ratio		Max Lbs Pedal	Avg Lbs. Pedal	Pump RPM		
1	1.78		80	46	107		
2	1.00		45	26	60		

Calculation used to determine vehicle configuration

- 1.78 gear ratio nearly doubles speed compared to last years hydraulic bike with a 1.00 gear ratio.
- Any pre-charge over 1200 psi would result in loss of pressure before the end of sprint race at motor gear selection 1.
- Bike can not begin to be propelled forward starting at a motor gear selection of 5 and up.

Vehicle Testing

Sprint Test

- First test 1600 psi pre-charge at 3000 psi used gears 1-7 speed of 13.2 mph at a time of 30.96 seconds
- Best average speed of 17.51 mph over 600 ft (1200 psi pre-charge at 3000 psi hydraulic pressure – Used gear 1 for entire race).
- Time of 23.36 seconds

Endurance Test

- 2024 bike test 5122 ft in 11:06 (average speed of 5.2 mph, max speed of 14.2 mph)
- 2025 bike test 5069 ft in 7:26 (average speed of 7.8 mph, 1.78 pedal to pump ratio, max speed of 15.5 mph).

Vehicle Testing Cont.

- Regen Test
 - Accumulator pre-charge of 1200 psi
 - From a hill of 14 ft elevation and 185 ft long
 - Distanced travelled of 220 ft from discharging
- Efficiency Test
 - Optimal efficiency 19%
 - Accumulator pre-charge of 1200 psi
 - Hydraulic pressure of 2500 psi
 - Distance travelled of 1856 ft

Lessons Learned

Frame:

- A good CAD model is key to designing an accurate and functional real-world model
- Gear ratio changes significantly affect system behavior
- Testing is extremely important to improve performance

Controls:

- Programming using Danfoss Plus+1 drag and drop programing method.
- Went through several iterations of stopwatch programing and getting accurate seconds.
- Collecting and storing data in controls.
- Wiring components using Deutsch connections.

Hydraulics:

- Schematic Design
- Importance of laminar flow
- Importance of reduced restriction
- Effect of gear ratios and accumulator pre-charge on hydraulic system

Thanks Sponsors

Thanks for Listening

Any questions or comments?

