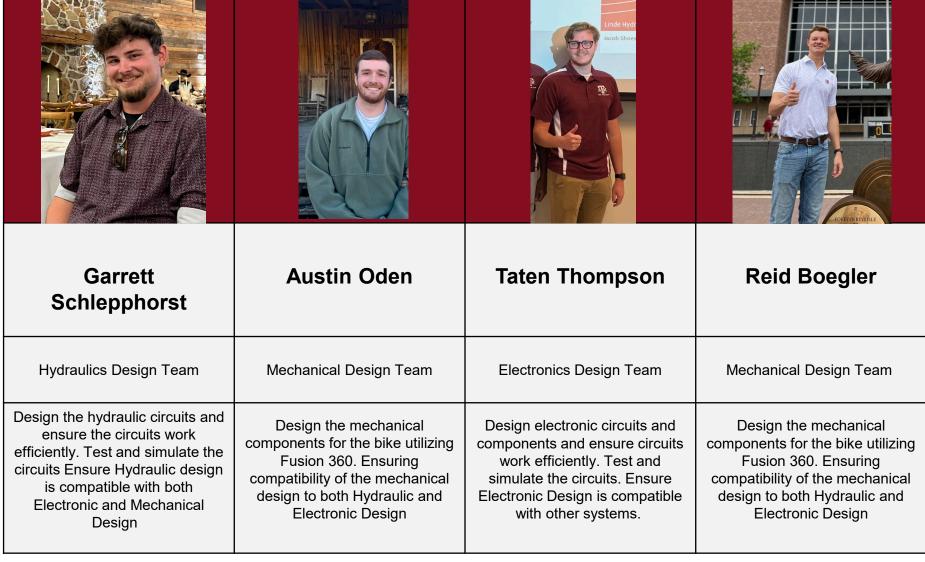
Fluid Power



DESIGN REVIEW
Texas A&M University
Team GATR
Professor Gary Bradley
4/24/2025

Meet the Team

Advisors and Mentors

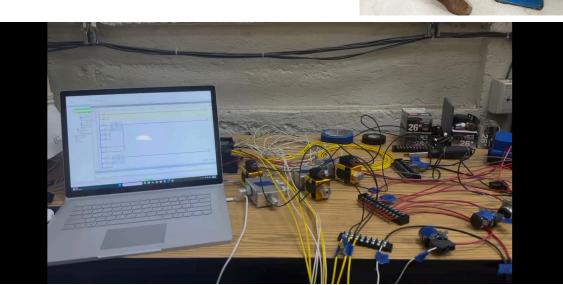
Professor Gary Bradley
Capstone Advisor

Mr. Calvin Rivas
Mr. Todd Townsend
Industry Mentors

Dr. Bhaskar Vajipeyajula
Faculty Advisor

Vehicle Construction

- Started with water-jetting components from sheet metals, cutting tubing for frame, and machining on manual mill/lathe.
- Welded H-frame on bike frame and spliced/welded boom arm with boom extension.
- Welded reservoir and water-tested to ensure waterproof.
- Designed and 3D printed components to house electronics, and to hold HMI.
- Assembled bike components to bike frame.
- Assembled hydraulic system to bike.
- Wired and programmed.


Vehicle Construction

Vehicle Construction

Final bike prior to testing

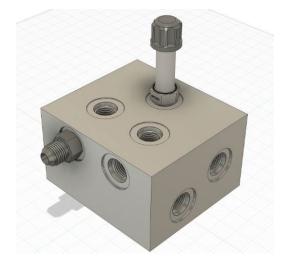
Vehicle Testing

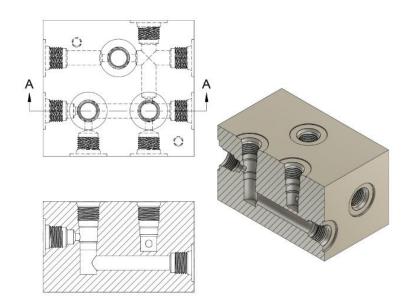
Tests ran:

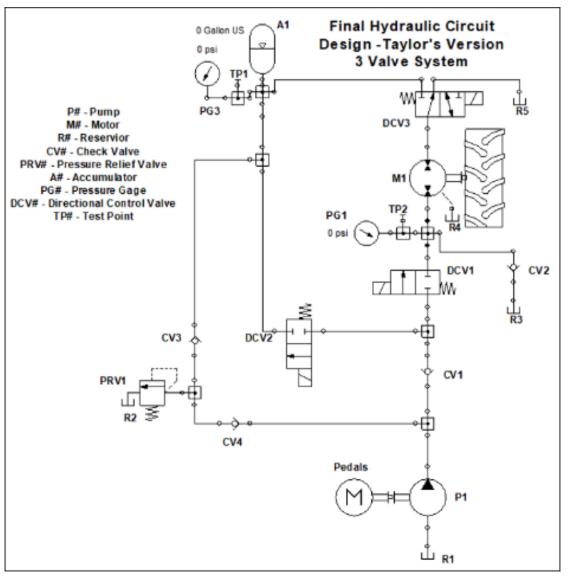
- Tested each hydraulic/electric system mode to ensure that each mode works properly and as intended.
 - Made sure designated solenoids were getting power when intended.
 - Made sure designated valves were actuating and hoses were properly connected.
- Used the graphs to monitor pressure buildup in the motor and accumulator overtime.
- Used indicator lights on the HMI screen to monitor which mode and which solenoids are activated in each mode.

Problems Encountered

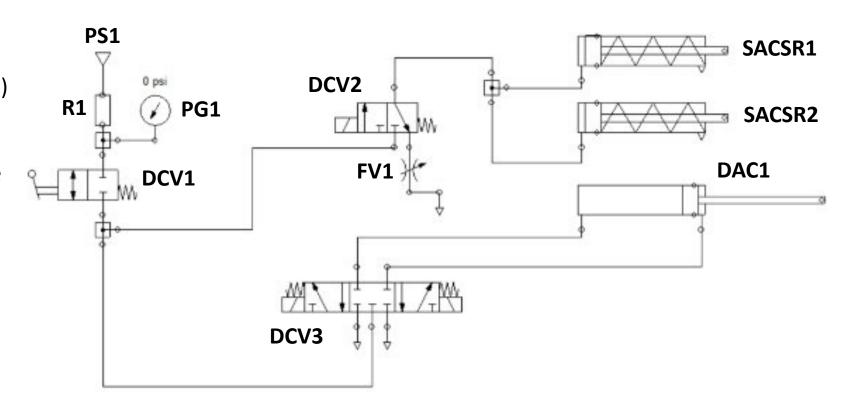
- Bearing connecting the belt and chain from the pedals to the pump broke while riding.
- Nut holding the sprocket on the gear box was stripped, causing the pedals to slip.
- Assembly issues with the hydraulic lines causing fluid to back up in unwanted places.
- Component spacing issues.
- Chain tensioning/slippage issues.
- HMI programming issues.
- Manufacturing issues.


Vehicle Testing

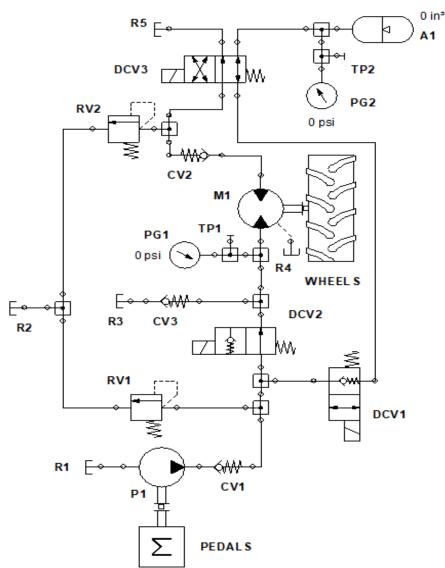



- Changes made or to be made after testing:
 - Modified the hydraulic circuit
 - Added a belt guard to protect the rider.
 - Tensioned the gear box shifter knob to allow for gear changes while riding.
 - Fabricated a new tachometer plate with bigger but less openings.
 - Modified the back wheel axle to prevent the wheel from backing itself off the frame.
 - Added a bushing instead of a bearing to the front plate that connects the belt to the chain from the pedals to the pump.

Previous Year's Hydraulic Design



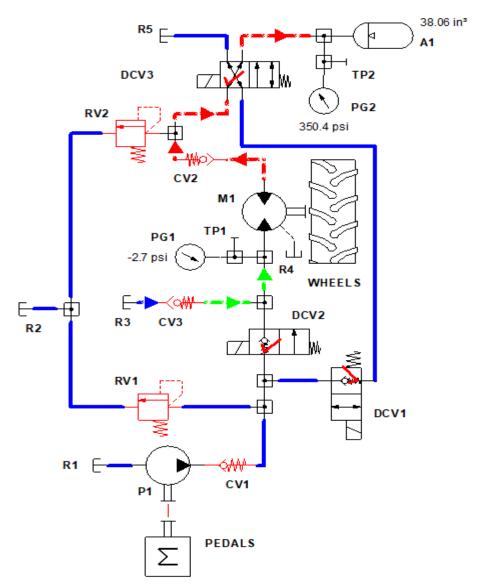
Previous Year's Pneumatic Design



PS# - Pressure Source (Air Pump)
R# - Reservoir
PG# - Pressure Guage
DCV# - Directional Control Valve
FV# - Flow Control Valve
DAC# - Double Acting Cylinder
SACSR# - Single Acting Cylinder,
Spring Retracting

Overall Circuit

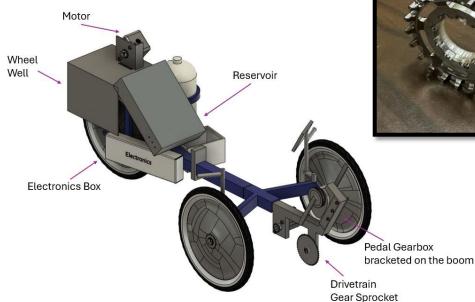
- 3 DCV design
- Check and Relief
 valves positioned to
 protect motor and
 pump from reverse
 pressure
- CV3 used in regenerative braking line instead of a DCV
- DCV3 acts as focal point of the hydraulic circuit



Vehicle Design/Final Vehicle

Hydraulics

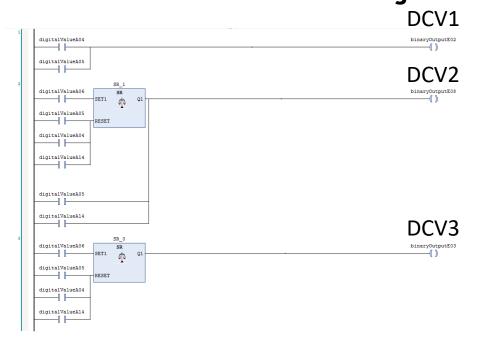
Regen Mode

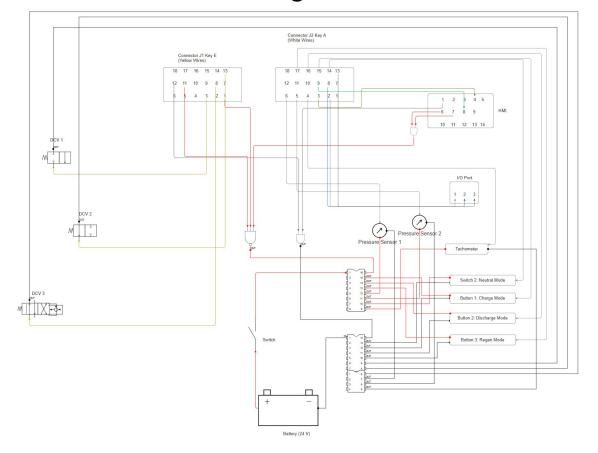

- CV3 replaced an original DCV for lower pressure drop and overall complexity
- DCV2 is closed to prevent and unwanted flow from the pump. This also increases the pressure from the motor to the reservoir by sealing off the rest of the circuit
- DCV3 is activated only for this mode

Vehicle Design/Final Vehicle Mechanical

Description	Specification
Overall Frame Length – Pedals to Rear Axle	78 Inches
Wheelbase Length – Distance from Front Axle to Rear Axle	48 Inches
Front Axle Width	33 Inches
Frame Height (Clearance)	15 Inches
Bike Weight	~150 lbs

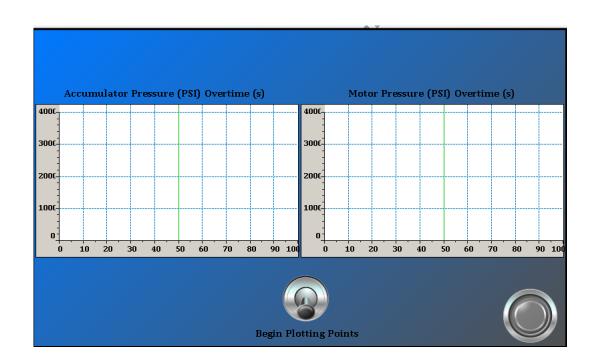
Gear Box Gear Ratio	
1st	1.82
2nd	1.47
3rd	1.19
4th	0.95
5th	0.76
6th	0.62
7th	0.49
8th	0.4
9th	0.32




Vehicle Design/Final Vehicle Electronics

CODESYS PLC Ladder Logic

Drawn Logic Circuit


Vehicle Design/Final Vehicle Electronics

HMI Start Screen w/ Indicators and Pressure meter

HMI Test Screen w/ Pressure Tables

Vehicle Design/Final Vehicle Electronics

PLC Structured Text Code

```
PROGRAM POU_1
            data: DINT;
             speed: REAL: //meter per second
            distance: REAL;
            circumference: REAL:
             meter: REAL;
             pulse: REAL;
             //22 diameter in.
            //8 pulses per rev
                                REAL:= 3000.0;
                                REAL:= 0.0;
             SensorMin:
                                REAL:= 0.0:
                                REAL:= 10000.0;
            SensorMax:
         _DINT_MC2_1:= data;
         REAL MC2 1:= speed;
         _BOOL_MC2_1 := binaryOutputE02; //DCV1
         _BOOL_MC2_2 := binaryOutputE08; //DCV2
         BOOL MC2 3 := binaryOutputE03; //DCV3
         data := (((REAL TO DINT(analogValueA15)-0)*(3000-0))/(36000-0))+0;
         data:= REAL TO DINT(((MaxScaled-MinScaled)/(SensorMax-SensorMin))*analogValueAl5)+(MinScaled-(SensorMin*(MaxScaled-MinScaled)/(SensorMax-SensorMin))));
   15 pulse := 8;
   circumference := 22*3.14;
        meter := circumference * 0.0254;
         speed := (frequencyA07*meter)/pulse;

■ 20 IF binaryOutputE02 = FALSE AND binaryOutputE08 = FALSE AND binaryOutputE03 = FALSE THEN

          _BOOL_MC2_4 := TRUE; //DRIVE

■ 22 ELSIF binaryOutputE02 = TRUE AND binaryOutputE08 = TRUE AND binaryOutputE03 = FALSE THEN

         _BOOL_MC2_5 := TRUE; //CHARGE
ELSIF binaryOutputE02 = TRUE AND binaryOutputE08 = FALSE AND binaryOutputE03 = FALSE THEN
  _BOOL_MC2_6 := TRUE; //DISCHARGE
ELSIF binaryOutputE02 = FALSE AND binaryOutputE08 = TRUE AND binaryOutputE03 = TRUE THEN
         BOOL MC2 7 := TRUE; //REGEN

■ 28 ELSIF binaryOutputE02 = FALSE AND binaryOutputE08 = TRUE AND binaryOutputE03 = FALSE THEN

           BOOL MC2 8 := TRUE; //NEUTRAL
```

Vehicle Design/Final Vehicle

Lessons Learned

Technical Lessons:

- Initial Design ≠ Final Design
- 3D design is very hard to replicate in real life. Accounting for human and machine error is hard to do so prepare for some redesign/fixes.
- Have better spacing between hydraulic components to fully optimize line placement and efficiency.
- Small mistakes can lead to big mistakes if not handled properly and fixed completely.


Personal Lessons:

- Communication between team members and people outside the team is crucial for project success.
- Finishing a project from start to finish takes an immense amount of time, dedication, and responsibility.
- Finding a work-school-life balance is difficult.
- Procrastination is a major problem in a project.

Thank You!

To all the people and companies who have helped us throughout this project, and Danfoss for hosting the competition.

