Fluid Power

FINAL PRESENTATION

UC IRVINE

DAVID COPP

APRIL 2025

Team Introductions

lan Lin
Project Lead and
Hydraulic Design

Vincent
Gutierrez
Project Lead and
Mechanical Design

Steven Tsui
Electronics Design
and Testing

Karen Gines
Mechanical Design
and
Documentation

Team Introductions

Ben TrejoMechanical Design and Manufacturing

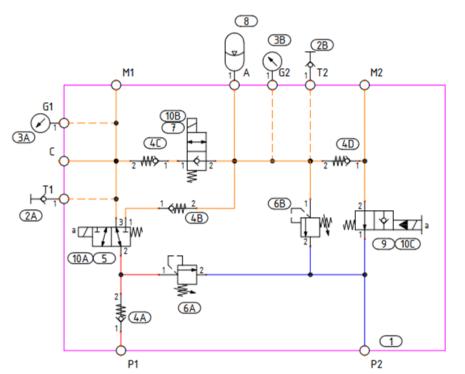
Elaine Kwok

Mechanical Design
and Hydraulic Design

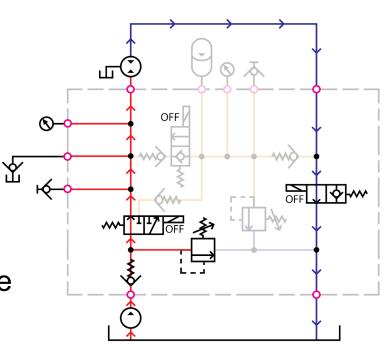
Adrian Jimenez

Mechanical Design and
Hydraulic Design

Completed Vehicle

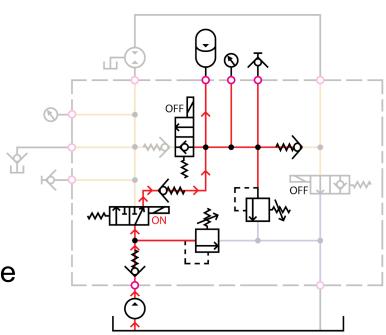

- Vehicle weight: ~140 lbs
- Prefabricated trike frame
- Hydraulic manifold
- LCD electronic display
- Pedal-to-pump gear ratio:
 - 38/16 = 2.375
- Wheel-to-motor gear ratio:
 - -18/20 = 0.9
- Drum and V-brakes

Hydraulic Circuit


- 4 Drive States
 - Direct drive (Default)
 - Direct charging
 - Regenerative braking
 - Accumulator venting
- 3 Solenoid Cartridge Valves
- 2 Pressure Relief Valves
 - Main line pressure
 - Accumulator pressure

Hydraulic Circuit - Direct Drive

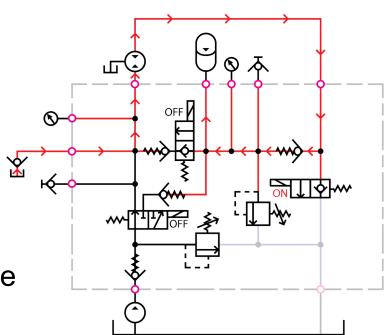
- Default State, all three solenoids deactivated
- Reservoir → Pump →
 Motor → Reservoir
 - Red Pressure lines
 - Blue Low pressure return line



Hydraulic Circuit - Direct Charging

- Solenoid A energized
- Reservoir → Pump
 - → Accumulator

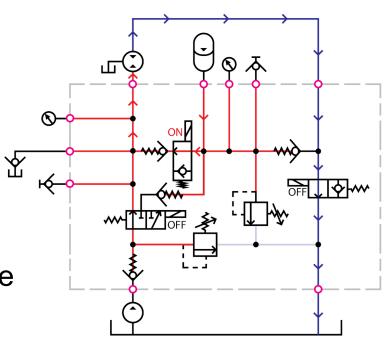
- Red Pressure lines
- Blue Low pressure return line


Hydraulic Circuit - Regen. Braking

- Solenoid C energized
- Reservoir → Motor → Accumulator

Red - Pressure lines

Blue - Low pressure return line

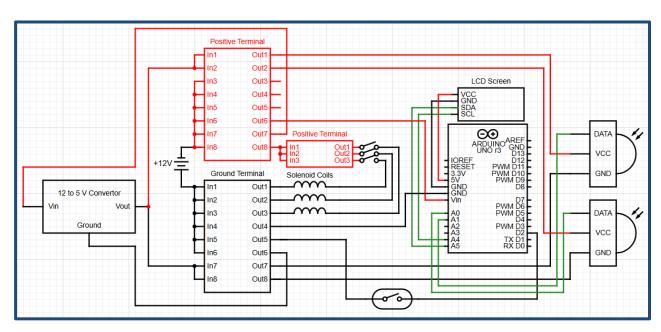


Hydraulic Circuit - Accumulator Venting

- Solenoids B energized
- Accumulator → Motor
 - → Reservoir

- Red Pressure lines
- Blue Low pressure return line

Frame Structure

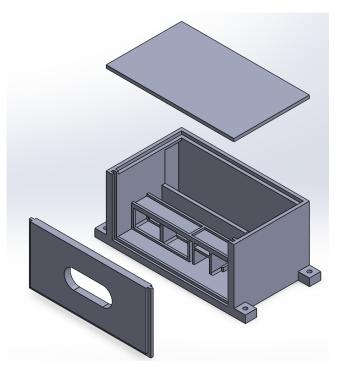

Modified single-speed Schwinn Meridian tricycle

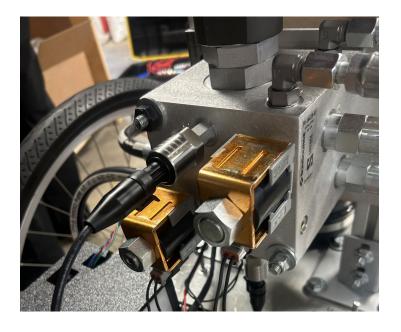
Controls and Electronic System

- Vehicle hydraulic state controlled by 3 toggle switches
- Heads-up LCD displays displays pressure transducers reading, RPM, and speed
 - Uses Arduino UNO R3 for data processing

Rear Electronics Box_(3 pieces)

- 12V rechargeable battery
 - 6000mAh
- Arduino UNO R3
 - Powers LCD screen and displays data
- Three Solenoid Switches
- Two 5V Pressure Transducers
- 12 to 5 V Convertor
 - Necessary to power the transducers
- Two 8 circuit terminal power blocks



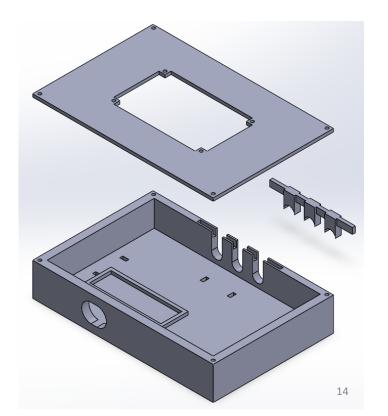


Rear Electronics Box

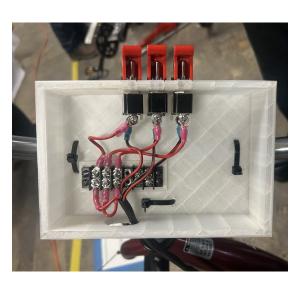
Rear Wiring

Solenoid Magnets and Pressure Transducers

Front Electronics Box_(3 pieces)



- LCD Screen
 - Displays readings for pressure,
 RPM, and speed
- Three Toggle Switches
 - Powered by 3 circuit power block
- Reed Switch
 - Reads RPM
- One 6 circuit terminal power block



Front Electronics Box

LCD Screen and Toggle Switches

Front Wiring

Reed Switch and Magnet

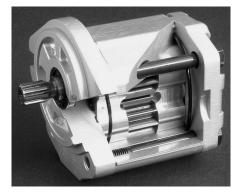
Arduino Code

```
#include <Wire.h>
#include <LiquidCrystal I2C.h>
#define REED SWITCH PIN 2
                                     // Reed switch connected to digital pin 2
#define PRESSURE SENSOR ACCUM A0
                                    // Accumulator pressure sensor
#define PRESSURE SENSOR MOTOR Al
                                    // Motor pressure sensor
const float wheel diameter = 0.6604; // Wheel diameter in meters
const float wheel circumference = 3.14 * wheel diameter; // Circumference in meters
volatile int reed count = 0;
unsigned long last time = 0;
unsigned long last reed time = 0;
float rpm = 0.0, speed = 0.0;
LiquidCrystal I2C lcd(0x27, 20, 4); // LCD I2C Address (0x27 is common)
// Pressure Sensor Calibration (Based on your actual baseline readings)
float accum min voltage = 0.137;
float motor min voltage = 0.826;
float sensor max voltage = 4.5;
float sensor max psi = 3000;
void countRevolutions() {
    reed count++; // Increment on each magnet pass
    last reed time = millis();
void setup() {
    Serial.begin(9600);
    pinMode (REED SWITCH PIN, INPUT PULLUP);
    attachInterrupt (digitalPinToInterrupt (REED SWITCH PIN), countRevolutions, FALLING);
    lcd.begin(20, 4);
    lcd.backlight();
    lcd.setCursor(0, 0);
    lcd.print("Fluid Power Trike");
void loop() {
    unsigned long current time = millis();
    float time elapsed = (current time - last time) / 1000.0;
```

```
if (time elapsed >= 1.0) {
    if (reed count > 0) {
        rpm = (reed_count / time_elapsed) * 60.0;
        speed = (rpm * wheel circumference) / 60.0;
        reed count = 0;
        last time = current time;
   // Timeout condition to reset speed if no pulses
    if (current time - last reed time > 3000) {
        speed = 0.0:
// Read raw voltages
float voltage accum = analogRead (PRESSURE SENSOR ACCUM) * (5.0 / 1023.0);
float voltage motor = analogRead (PRESSURE SENSOR MOTOR) * (5.0 / 1023.0);
// Convert to PSI using your calibrated offsets
float psi accum = ((voltage accum - accum min voltage) / (sensor max voltage - accum min voltage)) * sensor max psi;
float psi motor = ((voltage motor - motor min voltage) / (sensor max voltage - motor min voltage)) * sensor max psi;
// Clamp negative and very low readings to zero
if (psi accum < 5) psi accum = 0;
if (psi_motor < 5) psi_motor = 0;
// Update LCD Display
lcd.clear();
lcd.setCursor(0, 0):
lcd.print("RPM: ");
lcd.print(rpm);
lcd.setCursor(0, 1);
lcd.print("Speed: ");
lcd.print(speed, 2);
lcd.print(" m/s");
lcd.setCursor(0, 2);
lcd.print("Accum PSI: ");
lcd.print(psi accum, 1);
lcd.setCursor(0, 3);
lcd.print("Motor PSI: ");
lcd.print(psi motor, 1);
// Debug in Serial Monitor
Serial.print("RPM: "); Serial.print(rpm);
Serial.print(" | Speed: "); Serial.print(speed, 2);
Serial.print(" m/s | Accum PSI: "); Serial.print(psi accum, 1);
Serial.print(" | Motor PSI: "); Serial.println(psi motor, 1);
delay(500); // Update every 500ms
                                                                                                          16
```

// RPM & Speed Calculation

Component Selections



Hydraulic Gear Motor

- Product # 121.20.045.00
- 1.025 CID
- Inlet/Outlet Size: ½-14UNF
- Bi-rotational

Hydraulic Gear Pump

- Product #: 111.20.348.00
- 0.513 CID
- Inlet size: ½-14UNF
- 9 tooth spline
- CW rotation

Component Selections

Accumulator

Volume: 1 gallon

Port type: SAE-20

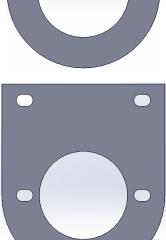
Pressure rating: 3000 PSI

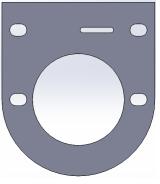
Pre-charge: 1000 PSI

Solenoid: Danfoss, Eaton, Comatol

- Product: Cartridge solenoid valves
 - x1 2 pos, 3 way spool 1-2/1-3
 - x2 2 pos, 2 way unipoppet

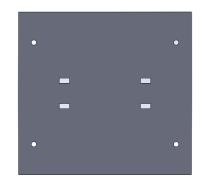
2 position, 2 way spool



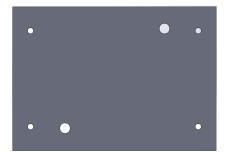

2 position, 2 way uni-poppet

Custom Manufactured Parts

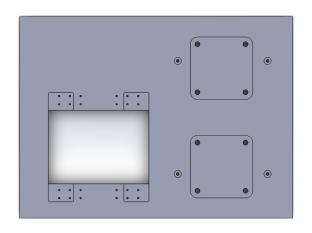
Modified spline hub


- Fastens to 16T bike sprocket
- Fits gear pump
- Custom aluminum drum
 - For drum brake
- Aluminum pump mount
- Aluminum motor mount
- Courtesy of Moseys
 Production Machinists

Custom Manufactured Parts


Reservoir / Accumulator Plate

- 8" x 8.5"
- ¼" tapped holes
- ½" x ¼" slots


Manifold Plate

- 6" x 8.5"
- ¼" and ¾" tapped holes

Base Plate

- 14" x 19"
- 1/8", 1/4", and 3/8" tapped holes
- 5.125" x 7" slot
- All done by SendCutSend

Lessons Learned

- Working with bike sprockets is restrictive
 - Industrial roller sprockets offer more freedom
- A more popular tricycle frame is more likely to use standard sizes
 - Avoid the need for custom-machined parts
- A hand pump mechanism for testing hydraulic circuit
 - Does not rely on working drivetrain
- Anticipate lead times!

Questions?

Special thanks to:

- David Copp, University of California, Irvine
- Bob Mosey, Mosey's Production Machinists
- Edgar Torres, Bucher Hydraulics
- John Zmuda, Mosey's Production Machinists
- Eric Flores, Motion and Flow Control Products Inc.
- Gordon Baker, Motion and Flow Control Products Inc.
- Ernie Parker, International Fluid Power Society
- Mary Pluta, National Fluid Power Association

