



#### FINAL PRESENTATION & DESIGN REVIEW

University of Louisiana at Lafayette Team Yasmeen Qudsi and John Carroll April 24<sup>th</sup> 2025



#### **Team Introductions**





Dadrian Day



Macey LeBlanc



Haley LaGarde



Mary Hymel



Dauntae Gloud



## **Vehicle Construction**



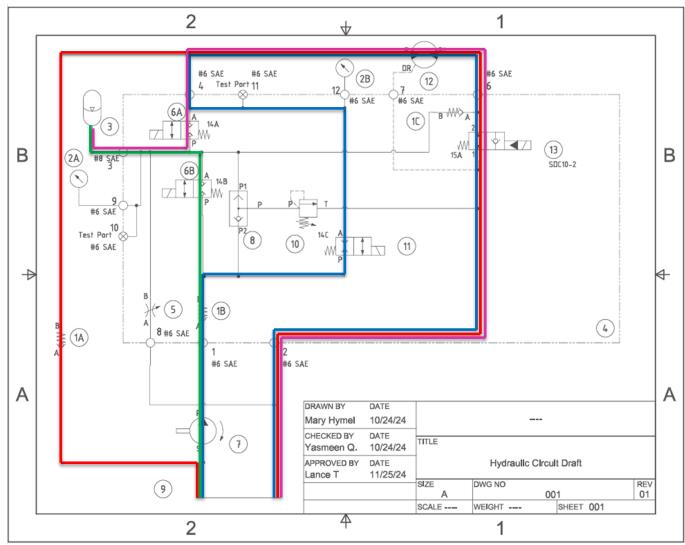









| Component              | Calculated Value          | Final Calculated Value    |
|------------------------|---------------------------|---------------------------|
| θ                      | 1.72° (3% grade)          | 1.73 (3% grade)           |
| Force of Pull          | 12.49 lb (390 lb vehicle) | 11.37 lb (355 lb vehicle) |
| τ                      | 124.9 in lb               | 113.7 in lb               |
| CIR <sub>90%(M)</sub>  | 0.87 CIR (1000 psi)       | 0.53 CIR (1500 psi)       |
| RPM (Drive Wheel)      | 504 RPM (30 mph)          | 504 RPM (30 mph)          |
| $GPM_{M}$              | 1.90 GPM                  | 1.15 GPM                  |
| Area (Lines)           | $0.0304 \text{ in}^2$     | $0.0184 \text{ in}^2$     |
| Line Diameter          | 0.20 in (1/5)"            | 0.15 in (3/20)"           |
| CIR <sub>90% (P)</sub> | 1.22 CIR (19.66 cc)       | 0.74 CIR (12.13 cc)       |


| Component   | Specification                 |
|-------------|-------------------------------|
| Pump        | 10.8 cc Danfoss Gear Pump     |
| Motor       | 16.8 cc Danfoss Gear<br>Motor |
| Hosing      | 3/8" & 1/2" lines             |
| Reservoir   | 2.5 gal Aluminum Fuel<br>Tank |
| Accumulator | 1 gal                         |



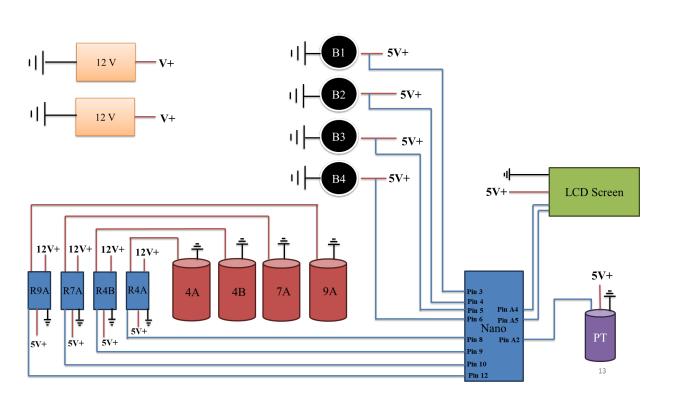


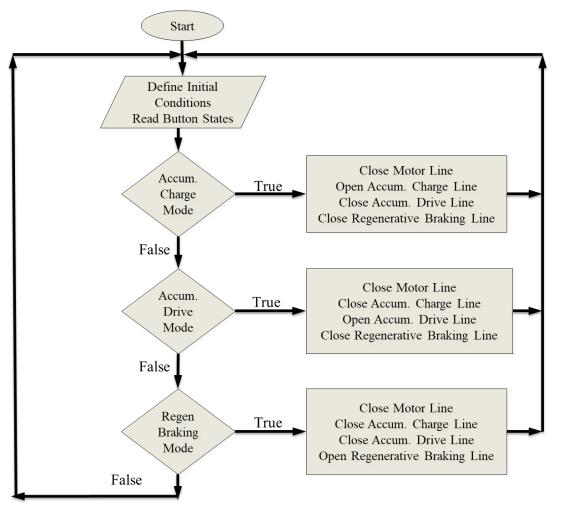


# Hydraulic Circuit






| Drive Mode        | Valve 4A | Valve 7A | Valve 9A | Valve 4B |
|-------------------|----------|----------|----------|----------|
| Direct Drive      | 0        | 0        | 0        | 0        |
| Accumulator       | 1        | 1        | 0        | 0        |
| <b>Charge</b>     |          |          |          |          |
| Accumulator Drive | 0        | 1        | 0        | 1        |
| Regenerative      | 0        | 1        | 1        | 0        |
| Braking           |          |          |          |          |


| Legend     |                      |
|------------|----------------------|
| Button On  | 1 => LOW             |
| Button Off | $0 \Rightarrow HIGH$ |

Main components: Reservoir (9),
Pump (7), Accumulator (3),
Motor (12), and Manifold (4)

### **Electronics**







# **Vehicle Testing**

| Sprint Race              |          |  |  |  |
|--------------------------|----------|--|--|--|
| Nitrogen Pre-Charge      | 500 psi  |  |  |  |
| Accumulator Pressure     | 1700 psi |  |  |  |
| Top Speed                | 9.2 mph  |  |  |  |
| 600 ft time              | 44.5 s   |  |  |  |
| <b>Endurance Race</b>    |          |  |  |  |
| Testing Time             | 15 min   |  |  |  |
| Total Distance Travelled | 12852 ft |  |  |  |
| Efficiency               |          |  |  |  |
| Nitrogen Pre-Charge      | 500 psi  |  |  |  |
| Accumulator Charge       | 1430 psi |  |  |  |
| Total Distance Travelled | 455.4 ft |  |  |  |
| Efficiency               | 7.00%    |  |  |  |
| Regenerative Braking     |          |  |  |  |
| Nitogen Pre-Charge       | 500 psi  |  |  |  |
| Accumulator Charge       | 350 psi  |  |  |  |
| Distance Travelled       | 41.3 ft  |  |  |  |

• Shortage of time and nitrogen supply, did not get to mirror competition values exactly



#### **Hydraulic Line Losses**

| Line size (in)                                | 0.375  |
|-----------------------------------------------|--------|
| Line size (ft)                                | 0.0313 |
| Total Length of Tubing (ft)                   | 5.5    |
| Density of Hydraulic Oil (kg/m <sup>3</sup> ) | 870    |
| # of fittings                                 | 6      |
| Loss coeffcient                               | 3      |
| Flow rate                                     | 1.9    |
| Flow rate (CFS)                               | 0.0042 |
| Cross Sectional Area (ft^2)                   | 0.0008 |
| Velocity of Fluid (ft/s)                      | 5.5193 |
| Head Loss (ft)                                | 2.4975 |
| Head Loss (m)                                 | 0.7612 |
| Pressure Loss Due to Friction (Pa)            | 6497   |
| Pressure Loss Due to Friction (psi)           | 0.9423 |
| Minor Loss (ft)                               | 1.419  |
| Minor Loss (m)                                | 0.4325 |
| Pressure Loss from Minor Loss (Pa)            | 3691.5 |
| Pressure Loss from Minor Loss (psi)           | 0.5354 |
| Total Pressure Loss (psi)                     | 1.4777 |
|                                               |        |

## Lessons Learned



- Time management to finish the bike earlier in the semester
- More testing and validation
- Pump installation and handling
- Make sure the manifold ports are in desired regions
- Make sure the rear axle can withstand all stresses

## Thank you







Thank you to all our sponsors and advisors!



## References



• [1] Educational Webinars. NFPA Foundation. (2024). https://nfpa foundation.org/universities/ programs-resources/fluid-power-vehicle - challenge/educational-webinars/

• [2] Overview & Rules. NFPA Foundation. (2024). https://nfpa foundation.org/wp-content/uploads/ 2024/10/2025-FPVC-Overview - Rules-and-Awards-v.5.pdf