Fuid Power

FINAL PRESENTATION &
DESIGN REVIEW
UNIVERSITY OF CINCINNATI
MUTHAR AL-UBAIDI
04/09/2025

- Morgan Taylor
- Hunter Marshall
- Omar Villegas
- Spencer Lloyd
- Christopher Axelson
- Logan Balla
- Zarria Gray



- Morgan Taylor
 - B.S. Mechanical Engineering Technology, Minor in Robotics and Automation
 - Fifth Year
 - Dry Ridge, Kentucky
 - o Co-Ops with:
 - Mazak
 - ThermoFisher Scientific
 - Greif
 - CertainTeed

- Hunter Marshall
 - B.S. Mechanical
 Engineering Technology,
 University of Cincinnati
 - 5th Year
 - From Cleveland, Ohio
 - 1 co-op at EGCEnterprises
 - 3 co-ops at CertainTeed

Speaking Now: Hunter

- Omar Villegas-Jimenez
 - Mechanical Engineering Technology
 - 5th Year
 - From Zacatepec, Morelos
 - First two Co-Ops: Gaylor Electric
 - Last Co-Ops: Bilstein & Thaman Rubber

Speaking Now: Omar

- Spencer Lloyd
 - Mechanical Engineering Technology
 - 5th year
 - Westerville, Ohio
 - o Par Excellence, Monti Inc
 - ATS Automation, GCI Consultants

Speaking Now: Spencer

- Christopher Axelson
 - Mechanical Engineering Technology
 - 5th year
 - o Loveland, Ohio
 - First 2 co-op's: Emerson
 Commercial & Residential
 Solution (Copeland)
 - Last 3 co-op's: GE Aerospace

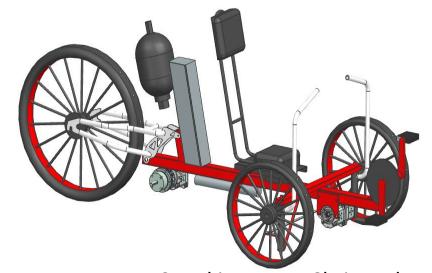
Speaking Now: Chris

- Logan Balla
 - Mechanical Engineering Technology
 - Fifth Year student
 - From Westerville, OH
 - First three co-ops with Thomas Tool & Mold Co.
 - Last two co-ops with HFI-INC.

- Zarria Gray
 - Mechanical Engineering Technology Minor in Robotics and Automation
 - 5th Year
 - From Cincinnati, Ohio
 - 2 Co-op rotations at Standard Aero
 - 3rd Co-op at CERN in Switzerland
 - 4th Co-op at CRANE Chem pharma

Speaking Now: Zarria

- Faculty Advisor Muthar Al-Ubaidi, PhD
- Professor and Director Mechanical Engineering Technology Program Education
 - o B.S. Mechanical Engineering, University of Baghdad
 - Masters Nuclear Engineering, University of London
 - PhD Nuclear Engineering, University of Cincinnati
- Hometown
 - Baghdad, Iraq
 - o Came to Cincinnati, USA in 1978
- Industry Mentor Dan Turner
 - President of GPM Controls


Speaking Now: Zarria

Frame Design, Calculations, and Construction Materials

- Front pump pedal assembly: Upgraded to the 2nd iteration of gears
- Front chain guard: Reverted to the 1st iteration due to lead time issues
- Manifold block mounts: Added ¼-20 bolts for secure mounting
- Motor mount: Refined design for lining up the rear gear and motor output gear
- Reservoir: Improved the clear reservoir with a second build and a better sealant
- Accumulator mount: Simplified with 2 hose clamps for easy installation
- Carbon fiber cover: Protects the rider from hydraulic, electrical, and moving components during operation

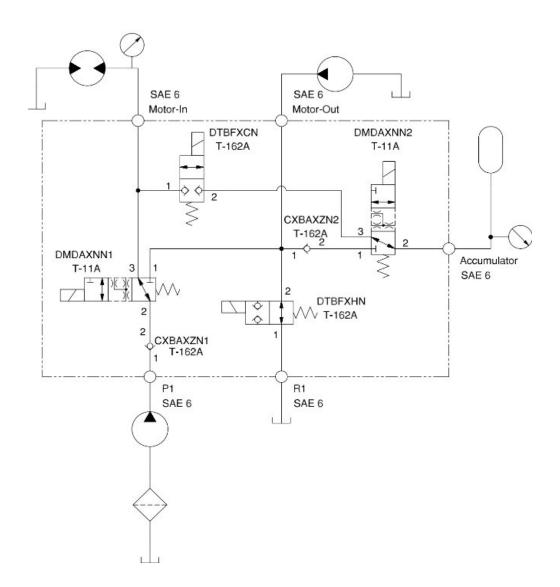
Speaking Now: Chris and Logan

Mechanical Components

Clutch Assembly

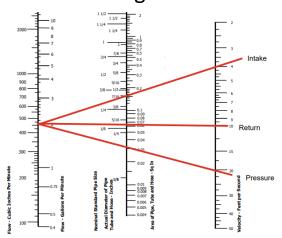
Front Gearing

Reservoir connections

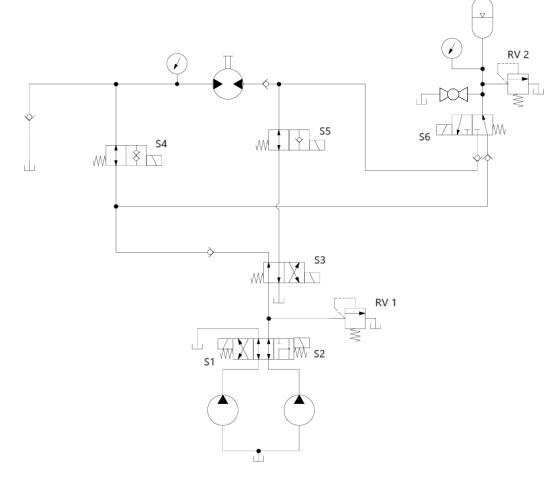


Speaking Now: Hunter

Previous Year's Hydraulic Circuit

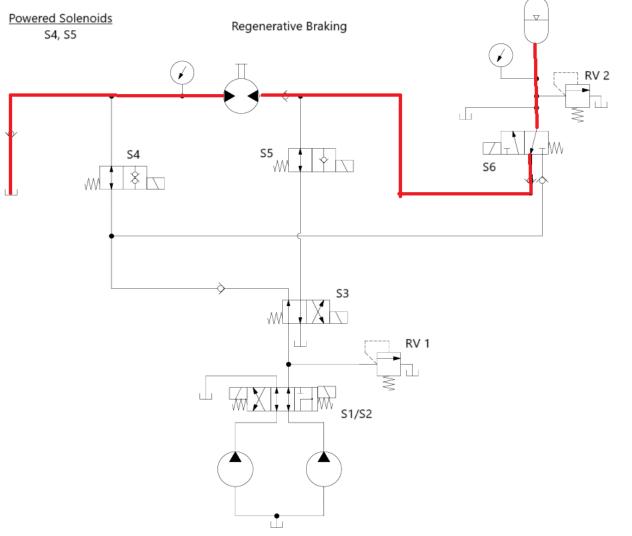


Hydraulic Circuit Calculations, Components, and Construction

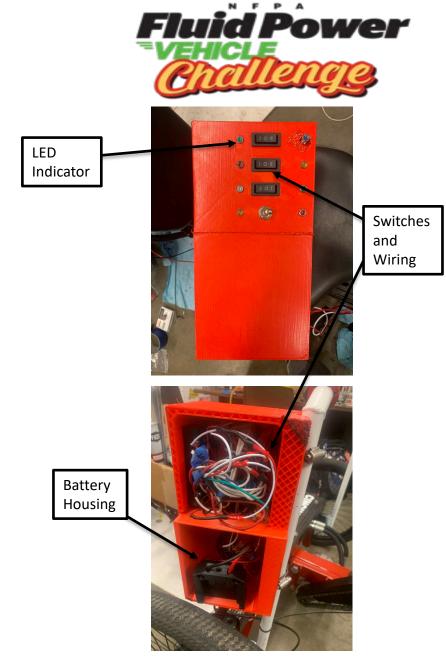

Calculations

- Pump Displacements
 - \circ Low 4.5 CC/Rev
 - Medium 11.5 CC/Rev
 - High 16 CC/Rev
- Motor Displacement 8.4 CC/Rev
- Resulting Gear Ratios
 - o Low .54:1
 - Medium 1.4:1
 - High 1.9:1
- Hose Sizing

BOM

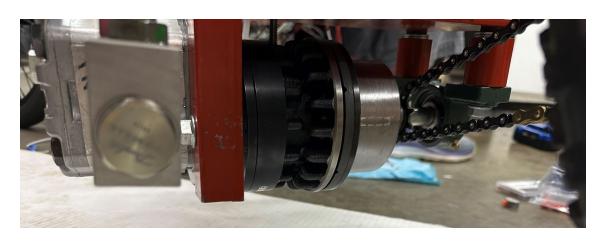

- Motor
- Pump
- Valves
 - o DCV 5
 - Check Valves 5
 - o Relief Valves 2
- Accumulator 1 Gal
- Reservoir 1.5 Gal
- Hoses
 - Pressure 3/8"
 - Intake 3/4"
 - Return 3/8"

Regenerative Braking Circuitry and Concepts

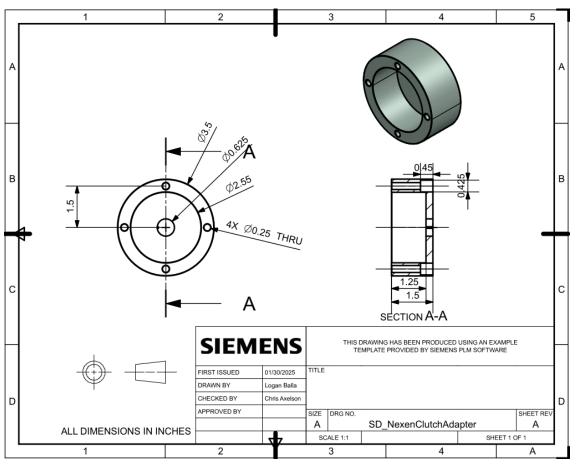

- Accumulator pre-charged to 950 PSI
- Determined experimentally
 - Set slightly over minimum pressure required to move
 - ~50% of maximum system pressure

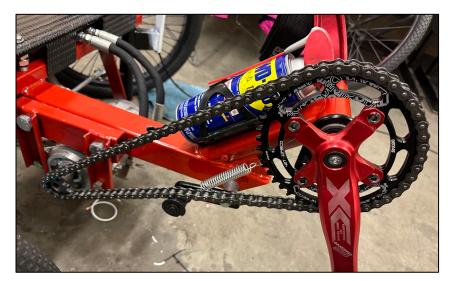
Speaking Now: Hunter

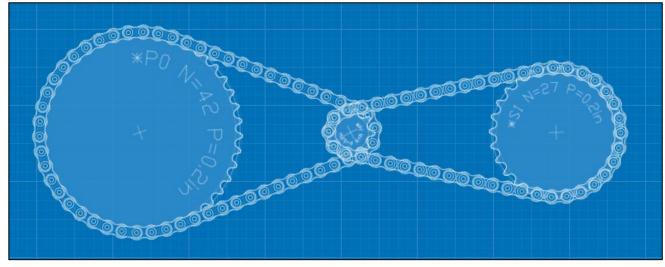
Solenoid Controls Calculations, Components, and Construction


- Resistor for LED indicators, P = I²R
 - Watts = Volts * Amps
 - Watts = 24 * 5 = 120 Watts
 - \circ 120 = (5)^2 * R
 - R = 4.8 Ohms
- Equivalent Deutsch plug-in connectors with pigtails used to power 24V hydraulic solenoids
- Spring loaded terminal blocks connect wiring across the switches to the power source and switches to the negative
- Control panel 3D printed with PLA to house all components apart from the physical solenoids.

Speaking Now: Morgan


Pneumatic Circuit, Components, and Construction





Power Train Calculations, Components, and Construction

Motor	5.2 cc		16 cc		Dual 4.9-16cc							
	5.2	5.2	16	16	4.9	20.9	8.4	8.4	10.8	10.8	16.8	16.8
	T (in*Ub)	RPM	T (in*lb)	RPM	T (in *tb)	RPM	T (in*tb)	RPM	T (in*lb)	RPM	T (in*tb)	RPM
Low	95.92	494.23	153.13	246.96	385.51	98.09	129.65	291.67	166.69	226.85	259.30	145.83
High	29.35	1288.46	418.75	90.30	27.66	1367.35	30.40	1244.05	39.08	967.59	60.79	622.02

Speaking Now: Spencer

Vehicle Testing Results and Improvements

- The reservoir was re-sealed after initial testing to prevent leaks
- All switches are housed in a single control panel for easier access by the rider, rather than being separated by pneumatic and hydraulic circuits
- After demonstrating a significant distance from boost charging in initial tests, pre-charging methods were improved by adjusting the gear ratio
- Additional covers were added for rider comfort and enhanced safety following initial testing

What We Changed

- No Manifold
- No Digital Display The correct electronic combination for coding could not be determined based on the wiring harness pin layout to input the sensors and modes of the bike.
- Carbon fiber covers covering the front beam of the bike
- 3D Print chain cover instead of carbon fiber
- No Arduino board in controls circuit, solenoids are straight wired

Final Vehicle

Lessons Learned

- Finalize circuits and order manifolds at least 2 months before the midway review to avoid delays during the holiday season.
- Account for lead times in planning to create more accurate deadlines and minimize downtime.
- Hydraulic oil leakage can compromise both the paint job and clutch performance.
- Team bonding and fun are just as critical to success as technical and conceptual expertise.
- While innovation fuels motivation, it can also complicate the project beyond initial expectations.

Improvements for Next Year

- Identify individual strengths prior to sub-team development
- Finalize circuits earlier
- Develop a plan to overcome the bike's potential energy more easily
- Create a more innovative controls approach for solenoids
- Implement more pneumatic applications
- Keep the frame design simple but keep in mind what the other sub-team's needs will be

Thank You

Questions?

